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DELINEATE Architecture

Our input training dataset is denoted as D = {(Xi, Yi), i = 1, 2, ..., N}, where N is the total number of

image patches. Each input image patch Xi has 512 × 512 pixels in size. The corresponding label for Xi is

a steatosis mask Yi. As this is a two-class instance segmentation problem, we use label 1 and 0 to represent

steatosis region and background, respectively. The segmentation process has two steps. First, regions

and boundaries of steatosis droplets are predicted independently. (Xi, Y
r
i ) and (Xi, Y

b
i ) are paired inputs

for region extraction and boundary prediction models, respectively. The ground truth region masks {Y r
i }

are generated from the ground truth boundary masks {Y b
i }. The combined output from steatosis region

and boundary models (Xc
i , Y

c
i ) in stage one is the input to FCN in the second stage for further instance

segmentation.

The region extraction model aims at identifying steatosis components from the image background. Inspired

by the state-of-the-art solution from the FCN family model U-Net [1], we design our region extraction model

by including multiple encoding and decoding layers. U-Net is specifically designed for bio-medical image

segmentation tasks where each pixel is assigned a class label from a pre-specified class set. Different levels of

contextual feature maps are extracted by the encoding or down-sampling layers for feature extraction. The

decoding or up-sampling layers act as a pixel-wise predictor that generates the desired probability masks

along with feature maps from the down-sampling path.

Although discriminating high-level features are extracted in the encoding layers, the detailed spatial infor-

mation can be lost due to feature map resolution reduction by max-pooling and strided convolution in the

down-sampling path. In the U-Net model, this information loss is compensated by the aggregated high

resolution feature maps from the encoder layers to the corresponding decoder layers. For further reduction
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in information loss, dilated convolution specifically designed for dense prediction has been proposed for con-

volutional network module [2]. Dilated convolution enriches the network with an exponential expansion of

the receptive field without down-sampling or resolution loss. Replacing the down-sampling operation with

dilated convolutions results in a semantic segmentation system with less space-invariance and better accu-

racy. This is demonstrated by a prior research where atrous convolution along with atrous spatial pyramid

pooling (ASPP) was shown as a powerful tool for dense object segmentation at multiple scales [3].

Our steatosis region extraction model consists of four down- and four up-sampling layers, respectively. We

modify the U-net model by stacking dilated convolution layers (depth = 3) at the bottleneck block where the

feature maps have the lowest resolution. This architecture, named as dil-Unet, is illustrated in Fig.1. The

dilated convolutional layers in U-Net improve the steatosis region recognition as demonstrated in the result

section. We use 512× 512 input images in our experiment. The kernels used in each convolutional layer are

initialized by the standard Xavier initialization [4] and the bias is initialized with zero. Xavier initialization

or normalized initialization can be described as follows:

W ∼ U

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
(1)

where W represents the initialized weights and nj is the size of the jth convolutional layer [5].

We train our region extraction network to minimize the softmax cross entropy loss Lr between the prediction

map P r and the target Y r:

Lr = −
K∑
c=1

∑
i,j∈Ω

yr(i, j) log(P r(i, j|c, wr)) (2)

where K = 2 is the number of classes, i.e. steatosis and background; Given the trained network parameter

set {wr}, yr is the binary indicator of the true label at pixel (i, j) and P r(i, j|c, wr, br) is the output of

soft-max activation layer indicating the probability of the pixel (i, j) having label c. The softmax output

from the final layer of region model is:

P r(i, j|c, wr) =
exp(ac(i, j|wr))∑K

k=1 exp(ak(i, j|wr))
(3)

where ak(i, j|wr) represents the activation in feature channel k at the pixel (i, j). We use Adam optimizer [6]

along with exponential learning rate decay to optimize the parameter set {wr} by back-propagation.
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Although dil-Unet based segmentation is insufficient to divide overlapped steatosis droplets by itself in our

experiments, the probability masks produced by dil-Unet provide supporting information for further analysis.

As a result, we further develop a steatosis boundary detection model to delineate the hidden boundaries of

the overlapped steatosis droplets.

Recent Deep Neural Networks (DNN) based studies on nuclei segmentation and gland instance segmenta-

tion have suggested that combination of region, location and edge information can achieve state-of-the-art

results [5, 8, 9, 7]. With our data, we notice that overlapping steatosis droplets remain connected in the

predicted region mask. Joint use of steatosis boundary information can compensate for the loss of fine-

resolution spatial information due to the max-pooling and strided convolution in the encoder-decoder model

for region detection. Thus, we integrate the boundary information with the region prediction results.

As the number of boundary pixels is much less than that of background pixels, this imbalance leads to

convergence issue when the dil-UNet model is used for the boundary detection. Multiple DNN models,

including N4-Fields [10], DeepContour [11], DeepEdge [12], CSCNN [13], focus on automatic hierarchical

feature learning and are used for object boundary detection in images of natural scenes. In our study, we use

the Holistically-Nested Network (HNN) [14], to learn the steatosis boundary maps. Similar to the previous

work [14], the CNN architecture derived from VGGNet model is adopted in our boundary detection module.

Initializing the weights with the pre-trained network [14], we further train the HNN model with our training

data (X,Y b). HNN consists of five convolutional stages having stride values 1, 2, 4, 8, and 16 respectively and

distinct receptive field sizes [14]. Additionally, a HNN model has M side-output layers serving as classifiers

with weights w = (w(1), ..., w(M)). We use W to represent the complete set of parameters for standard

network layers. The resulting objective function can be represented as:

L1(W,w) =

M∑
m=1

αml
m(W,wm) (4)

where lm is the image level loss function from side output m and can be computed over all pixels of training

image pair (X,Y b). Each side output lm is refined for minimization over iterations.

In this model, the sigmoid activation function σ(·) is used to compute the class probability at each image

pixel (i, j):

P b(i, j|X;W,wm) = σ(am(i, j)) (5)

Steatosis edge map prediction at the side output layer m is Ŷ (m)
1 (i, j) = σ(am(i, j)) where am(i, j) is the
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activation value from the side output layer m.

Finally, we add to the network a “weighted-fusion” layer that is trained in parallel during the training

phase [14, 15]. The fusion layer loss function is defined as:

L2(W,w, h) = Dist(Y, Ŷ2) (6)

where Ŷ2 = σ(
∑M

m=1 hma
m(i, j)) has fusion weights {hi}. Dist(·) is the cross-entropy loss with the fused pre-

dictions and the ground truth label maps. Optimal parameters are found by objective function minimization

with stochastic gradient descent and back propagation in training:

(W,w, h)∗ = argmin(Lb) (7)

where Lb = L1(W,w) + L2(W,w, h).

In the testing phase, the prediction is generated from both side output layers and the weighted-fusion layer:

(Ŷ
(1)
1 , · · · , Ŷ (M)

1 , Ŷ2) = HNN(X, (W,w, h)∗) (8)

It can be insufficient to use the average of all outputs from equation 8 as the boundary detection result [14].

Instead, in our study, we use the 5th side output to represent steatosis boundaries, i.e. Ŷ b = Ŷ
(5)
1 , as it

presents clean results by visual inspections.

After intensive experiments, we noticed that neither region nor boundary information by its own is sufficient

for accurate steatosis droplet segmentation. In addition, neither direct combination nor simple concatenation

of the two channels of outputs provides precise boundary information for overlapped steatosis droplets. False

positive and missing segmentation results were also noticed in region and boundary outcomes as shown in

Fig. 2. These results require an effective mechanism to integrate region and boundary information for en-

hanced segmentation performance. Unlike classical segmentation methods, deep learning based frameworks,

once trained, can be used for prediction without further explicit parameter change. Therefore, we use a

deep learning model in the integration phase to make the whole framework more generic without explicit

parameter-tuning. In our implementation, we use Fully Convolutional Network (FCN) [16], a simple and fast

segmentation model presented in Fig.1, as our integration network to generate the final prediction result.

Specifically, we use FCN-8s with skip connections from pool3 and pool4 for better deep semantic information
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integration on the down-sampling path. The final output has three channels representing the probabilities

of each pixel being background, boundary, or region class, respectively. Weight vectors for this network are

denoted as wc. The outputs of region and boundary modules (Ŷ r, Ŷ b) are combined by the FCN model

which generates a final 3-class prediction result P c(i, j|Ŷ r, Ŷ b;wc). We train the integrated network with

softmax cross entropy loss and Adam optimizer [6], with dropout probability 0.3 to overcome the over-fitting

problem.

Results

 

(a) (b) (c) (d) (e) 

Figure 1: In the post-processing stage, clumped steatosis droplets are segregated by an ellipse fitting quality
assessment method [17]: (a) Overlapped steatosis instances; (b) Curvature points are detected as red dots;
(c) Identified ellipse representations for steatosis boundaries; (d)Recovered steatosis boundaries; and (e)
Detected steatosis droplets with finalized separating borders

Fig. 1 illustrates all steps in the post-processing described in the main manuscript. Fig. 2 demonstrates

typical segmentation results where large areas marked by “1” are detected as steatosis regions by mistake

in the first stage and filtered in the final prediction result (marked by “2”) using the integration model

FCN-8s in the second stage. The exclusion of such falsely detected regions by the third integration network

improves the overall performance of our DELINEATE model. The qualitative comparison results across our

proposed method, FCN, DeepLab and variations of our method are presented in Fig. 3 where the recovered

steatosis boundaries in green are overlaid with the original images. Additionally, we plot Receiver Operating

Characteristic curves for all comparison methods in Fig. 4. We further demonstrate quantitative steatosis

segmentation accuracy profiles for one whole tissue component in Fig. 5 and Fig. 6. Fig. 5 presents how

performance measures are spatially changed over tissue patches, while Fig. 6 illustrates such variation in

steatosis components.
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Table 1: Summary of the key clinical information of the analyzed patient dataset

NAFLD
(n=36)

Parameter

Age, mean (SD) 14.9
(2.59)

Gender Female 12
(33.3%)

Male 24
(66.7%)

BMI z-score, mean (SD) 2.30
(0.52)

BMI Category
Normal 1(2.8)

Overweight 4(11.1)

Obese 31(
86.1)

NAFLD Diagnosis NAFL 28
(77.8%)

NASH 8
(22.2%)

Steatosis Assessment Liver Biopsy
Steatosis

Grade 0 (Less than 5%) 4
(11.1%)

Grade 1 (Between 5-33%) 9
(27.8%)

Grade 2 (Between 34-66%) 10
(22.2%)

Grade 3 (More than 66%) 13
(38.9%)

Total Steatosis, mean (SD) 46.3
(29.9)

Macrovesicular Steatosis, mean (SD) 44.5
(28.7)

MRI Volumen Fraction of Fat %, mean (SD) 11.1
(8.20)

Histology

Lobular Inflammation
None 8

(22.2%)

Less than 2/20 x per HPF 27
(75.0%)

Between 2-4/20x per HPF 1
(2.8%)

Ballooning None 25
(69.4%)

Few 11
(30.6%)

Portal Inflammation None 33
(91.7%)

Mild 3
(8.3%)

Fibrosis

0: None 13
(36.1%)

1A: Zone 3, perisinusoidal, delicate 15
(41.7%)

1B: Zone 3, perisinusoidal, dense 3
(8.3%)

1C: Portal, periportal only 1
(2.8%)

2: Zone 3 perisinusoidal and portal/periportal 3
(8.3%)

3: Bridging Fibrosis 1
(2.8%)
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Figure 2: Three typical regions with improved steatosis segmentation by the region and boundary integration
network are presented. Top-Left: input image; Top-Right: output from the region extraction model; Bottom-
Left: output from the boundary detection model; and Bottom-Right: final output of the integration model.
False steatosis region captured by the region prediction model and corrected false steatosis regions by the
final integration network are labeled by “1” and “2” in each example region.
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Original Image Ground Truth FCN DeepLab Unet+Unet+Unet Dil-Unet+HNN+FCN-8s Figure 3: Automatically recognized steatosis droplet boundaries in green are overlaid with representative

image patches (in rows). From left to right: the original image, ground truth, results from FCN [16], DeepLab
V2 [3], Unet+Unet+Unet (one variation of our proposed model), and dil-Unet+HNN+FCN-8s (our proposed
DELINEATE model). These images present overlapped steatosis droplets with large variations in color and
shape. Note that our proposed DELINEATE model can better delineate overlapped steatosis boundaries
than other models in the comparison set.
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Figure 4: Receiver Operating Characteristic (ROC) plots of multiple methods for comparison.
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Figure 5: Heat maps of image patch-wise performance variations of the proposed DELINEATE model, as
measured by (a)Precision, (b)Recall, (c)F1-Score, and (d) object-wise Dice index, are superimposed on an
original whole-slide liver tissue component image.
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Figure 6: Performance variations of our proposed DELINEATE model are illustrated by color coded steatosis
regions in a whole-slide liver tissue component image. Heat map plots of (a)Precision, (b)Recall, (c)F1-Score,
and (d) object-wise Dice index value for each steatsosis droplet are superimposed on the original tissue image.
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Dataset

The original clinical datatset information is in the file dataset.xlsx available at GitHub [18]. The key clinical

summary information is presented in Table 1.
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